Section 4.1: Graphing and Writing Inequalities TEACHER NOTES

POD: Solve each equation.

$$1.) -4 - 2m = 12$$

2.)
$$3 - \frac{x}{5} = 7$$

$$m = -8$$

$$x = -20$$

Objective: To graph and write inequalities.

Vocabulary:

1. inequality - a mathematical sentence that contains >, <, \ge , \le , \ne

2. solution of an inequality - any value that make the inequality true

Symbol	How to Read It	Circle's Appearance
>	greater than	open (not a solution)
<	less than	open (not a solution)
≥	greater than or equal to	closed (is a solution)
≤	less than or equal to	closed (is a solution)

Graph the solutions of each inequality.

2.)
$$-8 \ge c$$

Write an inequality for each graph.

Write an inequality for each statement.

- 7.) To qualify for the race, your time cannot be over 62 seconds. $x \le 62$
- 8.) The car ride to the park will take at least 30 minutes. $x \ge 30$

Section 4.2: Solving Inequalities by Adding or Subtracting Teacher Notes

POD: Solve the equations.

1.)
$$-7 + x = 15$$

 $x = 22$

2.)
$$x + 5 = 11$$

 $x = 6$

Objective: To solve inequalities by adding or subtracting.

Steps for Solving One-Step Inequalities Involving Addition or Subtraction:

- 1. Solve for the variable the same way you solve when it's an equation (you want to get the variable alone on one side of the inequality).
- 2. Graph your solution.

Examples: Solve each inequality. Graph your solution.

1.
$$n + 7 \ge 19$$

 $-77 - 7$
 $n \ge 12$

5.)
$$-8 < 3 + x$$

6.) The drama club can spend no more than \$120 for costumes. They spent \$79, how much more can they spend?

4.3 Solving Inequalities by Multiplying or Dividing Teacher Notes

POD:

1.)
$$-5 + x < 10$$

Objective: Students will be able to solve inequalities by multiplying or dividing. Students will write down the steps to solving a one-step inequality on a white board.

Steps for Solving One-Step Inequalities Involving Multiplication or Division:

- 1. Solve for the variable the same way you solve when it's an equation (you want to get the variable alone on one side of the inequality).
- 2. Graph your solution if required.

*******<u>SPECIAL RULE</u>: If you multiply or divide each side of an inequality by a **NEGATIVE** number, you **FLIP** the inequality symbol.******

Examples:

1.) $\frac{5\times}{5}$ < $\frac{-15}{5}$	2.) $\frac{-6w}{-6} \le \frac{12}{-6}$
\times < -3	$w \ge -2$
3.) $\frac{x}{-4} < 4$ (-4) $\frac{x}{-4} < 4$ (-4) $\times > -16$	4.) $\frac{3}{4}$ x < -6 $(\frac{4}{3})\frac{3}{4}$ x < -6($\frac{4}{3}$) x < -8
5.) <u>-3.6x</u> ≥ <u>-18.36</u>	6.) $-5 > -\frac{x}{6}$
-3.6 -3.6	(-6) $-5 > -\frac{x}{6}$ (-6)
-3.& -3.6	$(-6) -5 > -\frac{x}{6} (-6)$
× ≤ 5.1	30 < x or x > 30

7.) A recipe for an apple pie calls for 6 apples per pie. You have 27 apples. At most how many apple pies can you make?

p ≤ 4; Can't make a half of a pie

Section 4.4: Solving Two-Step Inequalities Teacher Notes

POD: Solve.

1.)
$$3 - \frac{x}{2} = -6$$

 $x = 18$
2.) $3 - 4x = -9$

Objective: To solve and graph two-step inequalities.

Steps for Solving Two-Step Inequalities:

- 1.) Use the same steps for solving two-step equations.
- 2.) Flip the inequality symbol when you multiply or divide by a negative number.

Symbol	How to Read It	Circle's Appearance
>	greater than	open (not a solution)
<	less than	open (not a solution)
<u>≥</u>	greater than or equal to	closed (is a solution)
≤	less than or equal to	closed (is a solution)

Examples:

Solve each inequality.

1.
$$3m + 9 \ge 18$$

 $-9 - 9$
 $3m \ge 9$
 $3m \ge 3$
 $m \ge 3$

3.
$$-4 - x \le 0$$

 $+4$ $+4$
 $-x \le 4$
 -1 -1
 $x \ge -4$ (Flip the inequality!)

4.
$$-9 - \frac{y}{5} < -12$$

 $+9 + 9$
 $-5 \cdot -\frac{y}{5} < -3 \cdot -5$ $y > 15$

5.
$$3 \ge \frac{x}{2} - 11$$

$$\frac{x}{2} - 11 \le 3$$

$$\frac{x}{2} + 11 + 11$$

$$(2) \frac{x}{2} \le 14(2)$$
 $x \le 28$

7.) Yellow Cab taxi charges a \$1.75 flat rate in addition to \$0.65 per mile. Katie only has \$10 for her ride. How many miles can Katie travel without exceeding her limit?

$$1.75 + 0.25 \times \le 10$$
, $\times \le 33$ miles

Section 4.4E: Inequality Word Problems Teacher Notes

POD: Solve.
1.)
$$-8 < 2x - 4$$

 $x > -2$
2.) $3 - \frac{x}{5} \ge 9$
 $x \le -30$

Examples: Decide whether the question is an inequality or equation. Set up an initial problem and then solve.

1.) It costs \$2.50 to rent bowling shoes. Each game costs \$2.25. You have \$10.00. At least how many games did you bowl if you had \$10.00?

Equation: Answer: $x \le 3.3333$

x ≤ 3; At least 3 games

2.) A theater charges \$9.50 per ticket. The theater has already sold 70 tickets. How many more tickets does the theater need to sell to earn at least \$1000?

Inequality: Answer: $9.50(70) + 9.50 \times \ge 1000$ $665 + 9.50 \times \ge 1000$ -665 -665 $9.50 \times \ge 335$ $\times \ge 35$ $\times \ge 36$ tickets 3.) Kent has \$500 in his savings account at the beginning of the summer. He wants to have at least \$200 by the end of the summer. He takes out \$25 every week. At most, how many weeks can Kent withdraw money from his account?

Inequality: Answer:

x ≤ 12 weeks

4.) Write and solve an inequality that represents the values of x for which the area of the rectangle will be at least 50 square feet.

Inequality:

