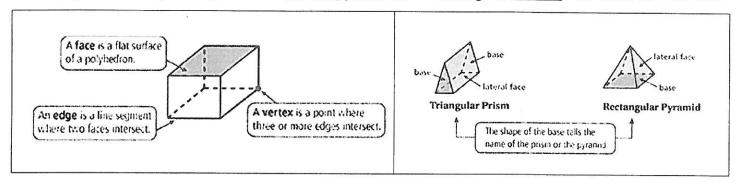
Common Care

TEACHER NOTES


Section 8.1: Three-Dimensional Figures

Objective: Students will be able to identify three-dimensional shapes and find the number of faces, edges and vertices that are in the shape.

Essential Question: How can you draw three-dimensional figures?

Vocabulary:

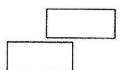
- 1.) Space Figure a three-dimensional figure or solid
- 2.) Prism a space figure with two polygon bases and lateral faces that are parallelograms
- 3.) Pyramid a space figure with one polygon base and triangular faces that meet at a vertex

Examples:

Describe the base, name the figure, number of vertices, faces, and edges.

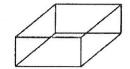
1.)	Dada - nauta au	2.)	
	Base = pentagon		Base = rectangle
	Figure = pentagonal		Figure =
	prism		rectangular prism
Vertices: 10	Faces: 7 Edges: 15	Vertices: 8	Faces: 6 Edges: 12
3.)		4.)	
	Base = hexagon		Base = triangle
	Figure = hexagonal pyramid		Figure = triangular pyramid
Vertices: 7	Faces: 7 Edges: 12	Vertices: 4	Faces: 4 Edges: 6

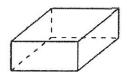
5.) Draw a rectangular prism.


Step 1:

Step 2:

Connect corresponding vertices.




Change any *hidden* lines to dashed lines.

rectangular bases.

Draw identical

6.) Draw a triangular pyramid.

Step 1:

Step 2:

Step 3:

Draw a triangular base and a point.

Connect the vertices of the triangle to the point.

Change any *hidden* lines to dashed lines.

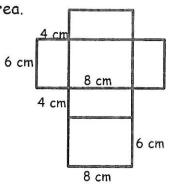
7.) Draw the front, side, and top views of the solid.

front:

side:

top:

Section 8.2: Surface Area of Prisms


Objective: Students will be able to find the surface area of a prism from a net. Essential Question: How can you find the area of the entire surface of a prism?

1.) Find the surface area.

Figure:

Rectangular

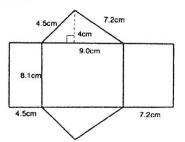
Prism

Surface Area:

Sides: $4(6) = 24 \cdot 2 = 48$

Large Rectangles: $8(6) = 48 \cdot 2 = 96$ Small Rectangles: $8(4) = 32 \cdot 2 = 64$

•


 $48 + 96 + 64 = 208 \text{ cm}^2$

2.) Find the surface area.

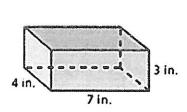
Figure:

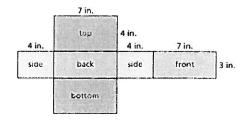
Triangular

Prism

Surface Area:

Triangles:

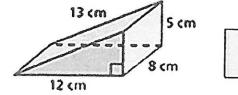

 $0.5(4)(9) = 18 \cdot 2 = 36$

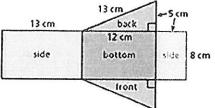

Left Rectangle = 8.1(4.5) = 36.45

Middle Rectangle = 8.1(9) = 72.9 Right Rectangle = 8.1(7.2) = 58.32

$$36 + 36.45 + 72.9 + 58.32 = 203.67 \text{ cm}^2$$

3.) Make a net of the rectangular prism. Then find the surface area.


Top/Bottom: $7(4) = 28 \cdot 2 = 56$


Sides: $4(3) = 12 \cdot 2 = 24$

Front/Back: $7(3) = 21 \cdot 2 = 42$

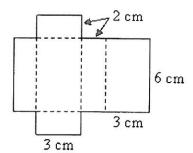
56 + 24 + 42 = 122 in2

4.) Make a net of the triangular prism. Then find the surface area.

Triangles: $0.5(5)(12) = 30 \cdot 2 = 60$

Left Rectangle: 13(8) = 104 Middle Rectangle: 12(8) = 96 Right Rectangle: 5(8) = 40

Total = $60 + 104 + 96 + 40 = 300 \text{ cm}^2$

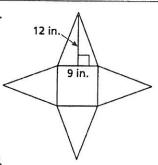

5.) A rectangular prism that is 3 cm long, 2 cm wide, and has a height of 6 cm. Draw a net for the rectangular prism, then find the surface area.

Bottom/Top: $3(2) \cdot 2 = 12$

Sides: $2(6) \cdot 2 = 24$

Front/Back: $6(3) \cdot 2 = 36$

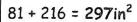
Total = 12 + 24 + 36 = 72 cm²


Section 8.3: Surface Areas of Pyramids

Objective: Students will be able to find the surface area of a pyramid from a net. Essential Question: How can you use a net to find the surface area of a pyramid?

1.) Find the surface area.

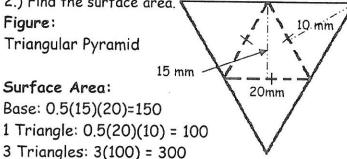
Figure:


Square Pyramid

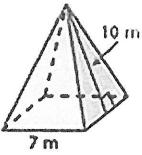
Surface Area:

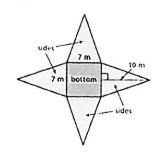
Base: 9(9) = 81

1 Triangle: 0.5(9)(12) = 544 Triangles: 4(63) = 216



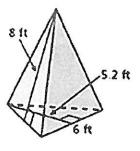
2.) Find the surface area.

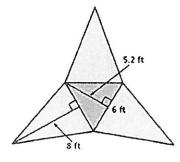

Figure:


Triangular Pyramid

Surface Area:

3.) Draw a net for the square pyramid. Then find the surface area.




Base: 7(7) = 49

1 Triangle: 0.5(7)(10) = 354 Triangles: 4(35) = 140

Total: $49 + 140 = 189 \text{ m}^2$

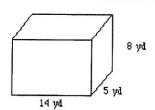
4.) Draw a net for the triangular pyramid. Then find the surface area.

Base: 0.5(6)(5.2) = 15.61 Triangle: 0.5(6)(8) = 243 Triangles: 3(24) = 72

Total: $15.6 + 72 = 87.6 \text{ ft}^2$

Section 8.4: Volumes of Rectangular Prisms

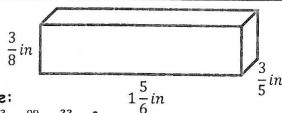
Objective: Students will be able to find the volume of prisms and unknown dimensions of a prism using the volume.


Essential Question: How can you find the volume of a rectangular prism with fractional edge lengths?

Volume Formulas:

V = Bh | where "B" is the area of the base and "h" is the height

Find the volume of each figure.


1.)

Volume:

$$14 \cdot 5 \cdot 8 = 560 \text{yd}^3$$

2.)

Volume:

$$\frac{3}{8} \cdot \frac{11}{6} \cdot \frac{3}{5} = \frac{99}{240} = \frac{33}{80} \text{ in}^3$$

3.) If the volume of a rectangular prism is 336in³, the base is 12in, and the width is 7in, what is the height?

$$336 = h \cdot 12 \cdot 7$$

$$336 = b \cdot 84$$

$$b = 4in$$

4.) Write and solve an equation to find the height of the computer tower.

 $1792 = h \cdot 16 \cdot 7$

$$1792 = b \cdot 1/12$$

$$b = 16 in.$$

 $Volume = 1792 in.^3$