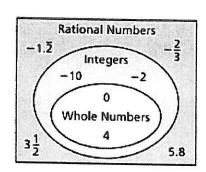
Section 2.1: Rational Numbers Notes

POD: Compare. Use >, <, or = to complete each statement.

1.)
$$-5 \rightarrow -8$$

Objective: Students will be able to order, compare, and convert rational numbers into decimals and fractions.


Vocabulary:

Rational Number: A number that can be written as the ratio of

two integers

Terminating Decimal: A decimal that ends

Repeating Decimal: Decimal that has a repeating pattern.

Examples: Write the rational number as a decimal

1.)
$$\frac{5}{6} = 0.8\overline{3}$$
 2.) $-5\frac{5}{11} = -5.\overline{45}$ 3.) $-2\frac{1}{4} = -2.25$

Examples: Write the decimal as a fraction in simplest form

4.) $0.28 = \frac{28}{100}$	5.) $0.125 = \frac{125}{1000}$	6) -11 3511 35
Divide by 4 = $\frac{7}{}$	Divide by 125	6.) $-11.35 = -11\frac{35}{100}$ Divide by 5
25	8	$=-11\frac{7}{20}$

Examples: Compare using >, <, or =

7.) - 2.2 _____ - 2.42 | 8.) -1.82 ____ -1.81 | 9) -5
$$\frac{3}{11}$$
 ____ -5. $\overline{2}$

10.) The table shows the elevations of four sea creatures relative to sea level. Which of the sea creatures are deeper than the whale? Explain.

Convert all to decimals to compare:

Creature	Elevations (km)	1
Anglerfish	$-\frac{13}{10}$	Angle
Squid	$-2\frac{1}{5}$	Squid
Shark	$-\frac{2}{11}$	Sharl
Whale	-0.8	Whal

D	ecimal
Angler	fish: -1.3
Squid:	-2.2
Shark:	-0.18
Whale:	-0.8

The squid and the angler fish are deeper than the whale because they are -2.2 and -1.3.

Section 2.2: Adding Rational Numbers Notes

POD: Compare. Convert both fractions to a common denominator.

1.)
$$\frac{3}{4} < \frac{5}{6} = \frac{9}{12} < \frac{10}{12}$$

2.)
$$\frac{2}{3} < \frac{4}{5} = \frac{10}{15} < \frac{12}{15}$$

Objective: Students will be able to add rational numbers.

Rules for adding fractions with different denominators:

- 1. Find their least common denominator.
- 2. Change the fractions according to their least common denominators.
- 3. Add or subtract the numerators.
- 4. Keep the common denominator.
- 5. Simplify.

-\$10.35

Examples:

1.) $\frac{3}{4} + \frac{1}{6} =$	2.) $\frac{1}{3} + (-\frac{4}{5}) =$		
$\frac{9}{12} + \frac{2}{12} = \frac{9+2}{12} = \frac{11}{12}$	$\frac{5}{15}$ + $\left(-\frac{12}{15}\right)$ = $-\frac{7}{15}$		
3.) $-1\frac{1}{5} + -\frac{1}{2} =$	4.) $\frac{15}{4}$ + - 3 $\frac{1}{3}$		
$-\frac{6}{5} + -\frac{1}{2} = -\frac{12}{10} + -\frac{5}{10} = -\frac{17}{10} = -1\frac{7}{10}$	$\frac{15}{4} + \frac{-10}{3} = \frac{45}{12} + \frac{-40}{12} = \frac{5}{12}$		
5.) -5.8 + 3.7	6.) -2.5 + -3.2		
5.8 (Subtract since they're different signs)	2.5 (Add since they are same signs)		
<u>-3.7</u>	<u>+3.2</u>		
 -2.1 (Should stay negative, because bigger one is negative) 	-5.7 (Should stay negative because they were both negative)		
7.) Your bank account balance is -20.85. You deposit \$10.50. What is your new balance?			
20.85 (Subtract since they're different signs)			
<u>-10.50</u>			

(Should stay negative since larger number was negative)

Section 2.3: Subtracting Rational Numbers Notes

1.)
$$\frac{7}{12} + \frac{1}{6} = \frac{3}{4}$$

2.)
$$\frac{1}{2} + \frac{4}{5} = 1\frac{3}{10}$$

Objective: Students will be able to subtract rational numbers.

Rules for subtracting fractions with different denominators:

- 1. Find their least common denominator.
- 2. Change the fractions according to their least common denominators.
- 3. Add or subtract the numerators.
- 4. Keep the common denominator.
- 5. Simplify.

Examples:

1.)
$$-\frac{1}{2} - \left(-\frac{5}{9}\right) = -\frac{1}{2} + \frac{5}{9}$$
 $-\frac{9}{18} + \frac{10}{18} = \frac{1}{18}$

2.) $-5 - \frac{5}{3}$
 $-\frac{15}{3} + \frac{-5}{3} = \frac{-20}{3} = -6\frac{2}{3}$

3.) $-4\frac{1}{7} - \left(-\frac{6}{7}\right) = -4\frac{1}{7} + \frac{6}{7}$
 $-\frac{29}{7} + \frac{6}{7} = \frac{-23}{7} = -3\frac{2}{7}$

4.) $12.8 - 21.9$
 21.9 (Subtract since they're different signs)
 $-\frac{12.8}{-9.1}$ (Should stay negative, because bigger one is negative)

5.) $-8.4 - 6.7$
 -15.1 (Should stay negative because they were both negative)

6.) Find the distance between -2.2 & 8.4
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2 + -8.4$
 $-2.2 - 8.4 = -2.2$

7.) A cook has $2\frac{2}{3}$ cups of flour. A recipe calls for $2\frac{3}{4}$ cups of flour. Does the cook have enough flour?

$$2\frac{3}{4} - 2\frac{2}{3} = 2\frac{9}{12} - 2\frac{8}{12} = \frac{1}{12}$$

Not enough flour, still needs $\frac{1}{12}$ of a cup.

Section 2.4: Multiplying and Dividing Rational Numbers Notes

POD: Solve.

1.)
$$-\frac{4}{5} - \left(-\frac{2}{3}\right) = -\frac{2}{15}$$

2.)
$$1\frac{1}{2} - 2\frac{2}{3} = -1\frac{1}{6}$$

Objective: Students will be able to multiply and divide rational numbers.

Steps for Multiplying Fractions:

- 1. Write each number as a fraction.
- 2. Multiply the numerators.
- 3. Multiply the denominators.
- 4. Simplify.

***YOU DO NOT NEED TO FIND A COMMON DENOMINATOR!

***YOU MAY SIMPLIFY THE FRACTIONS BEFORE MULTIPLYING!

Examples:

Examples: 1

1.)
$$\frac{5}{8} \cdot \frac{2}{3} = \frac{10}{24} = \frac{5}{12}$$
 OR $\frac{5}{8} \cdot \frac{2}{3} = \frac{5}{12}$ | 2.) $-\frac{1}{4} \cdot -\frac{4}{3} = \frac{4}{12} = \frac{1}{3}$

2.)
$$-\frac{1}{4} \cdot -\frac{4}{3} = \frac{4}{12} = \frac{1}{3}$$

Steps for Dividing by a Fraction:

- 1. Write each number as an improper fraction.
- 2. Rewrite the second fraction as a reciprocal (FLIP!)
- 3. Follow the rules for multiplying fractions.

**DIVIDING A FRACTION IS THE SAME AS MULTIPLYING ITS RECIPROCAL!

3.)
$$-\frac{3}{10} \div \frac{2}{5}$$

 $-\frac{3}{10} \cdot \frac{5}{2} = -\frac{15}{20} = -\frac{3}{4}$

4.)
$$-2\frac{4}{5} \div -7$$

$$\frac{-14}{5} \cdot \frac{-1}{7} = \frac{14}{35} = \frac{2}{5}$$

5.) Rosa makes $2\frac{1}{2}$ cups of pudding. If she splits the pudding into cups of $\frac{1}{3}$ for each serving, how many servings can she get from the pudding?

$$2\frac{1}{2} \div \frac{1}{3} = \frac{5}{2} \cdot \frac{3}{1}$$

$$\frac{15}{2} = 7 \frac{1}{2} servings$$