3.1 Evaluating Variable Expressions TEACHER Notes

Vocabulary:

- 1.) Algebraic expression a mathematical phrase with at least one variable (does not have an "equal" sign)
- 2.) Coefficient The numerical factor of a term that contains a variable
- 3.) Constant A term without a variable.
- 4.) Term Parts of an algebraic expression.
- 5.) Variable a letter that represents an unknown number

Identify the terms, coefficients, and constants in each expression.

1.) 5x + 13	2.) 2w ³ + y + 4
Terms: 5x and 13 Coefficient: 5 Constant: 13	Terms: 2w ³ and y and 4 Coefficients: 2 and 1 Constant: 4

How to Evaluate Expressions:

- 1.) Replace the variables with the appropriate numbers
- 2.) Use order of operations (PEMDAS) to simplify

Evaluate each expression for n = 3, x = 5, and y = 6.

3.) nxy 3 · 5 · 6	4.) $\frac{xy-3}{n^2} = \frac{(5)(6)-3}{3^2}$
= 90	$=\frac{30-3}{9}=\frac{27}{9}=3$

Evaluate each expression for a = 2, b = 5, and c = 10

3.2 Writing Algebraic Expressions TEACHER notes

Vocabulary:

- 1. <u>Numerical expression</u> a mathematical phrase with numbers and operation symbols only (no variables)
- 2. <u>algebraic expression</u> a mathematical phrase with at least one variable
- 3. Phrase "a number" means a variable

Common Mathematical Word Phrases that imply Operations:

Addition	Subtraction	Multiplication	Division
➤ Sum of	difference of	> product of	> Quotient of
> more than	> less than	> times	divided by
> plus	> fewer than	> twice	·
total of	> minus	multiplied by	
increased by	decreased by	> "of" a number	
added to	> subtracted from		
all together	take away		

Examples:

Write an expression for each word phrase.

1.	14 more than a number x	x + 14
----	---------------------------	--------

3. the sum of 18 and
$$\times$$
 _____18 + \times ____

4. the quotient of 3 and a number
$$z = \frac{3}{z}$$

Write a word phrase for each expression. (sample answers given)

8.
$$x + 2$$
 the sum of x and 2; x increased by 2

9.
$$\frac{p}{9}$$
 the quotient of p and 9; p divided by 9

<u>Application Problems:</u>

10.) Write an expression for the problem:

You buy 5 bags of peanuts to share with your friends. Each bag contains p ounces of peanuts. How many ounces of peanuts did you buy?

Expression: 5p

11.) Write an expression to describe the relationship of data in the table below.

n		
15	19	1
20	24	
25	29	1

Expression: n + 4

3.3 Properties of Addition and Multiplication TEACHER Notes

Vocabulary:

1. Equivalent Expressions - expressions with the same value

€0 Key Ideas

Commutative Properties

Words Changing the order of addends or factors does not change the sum or product.

Numbers
$$5 + 8 = 8 + 5$$
 Algebra $a + b = b + a$
 $5 \cdot 8 = 8 \cdot 5$ $a \cdot b = b \cdot a$

Associative Properties

Words Changing the grouping of addends or factors does not change the sum or product.

Numbers
$$(7 + 4) + 2 = 7 + (4 + 2)$$

 $(7 \cdot 4) \cdot 2 = 7 \cdot (4 \cdot 2)$

Algebra
$$(a+b)+c=a+(b+c)$$

 $(a \cdot b) \cdot c=a \cdot (b \cdot c)$

Identity Properties:

Identity property of multiplication: A number multiplied by 1 is still the original number.

Example: $7 \times 1 = 7$

Identity property of addition: Zero added to any number is still the original number.

Example: 3 + 0 = 3

Simplify each expression.

Jimpiny each expression.	
1.) 7 + (12 + x)	2.) (6.1 + x) + 8.4
(7 + 12) + x 19 + x	(6.1 + 8.4) + x
19 + X	14.5 + x
3.) 5(11y)	4.) 4.5 · r · 1
55y	4.5r
5.) 5(4n)	6.) 10 + (a + 9)
20n	a + (10 + 9)
	a + 19

Tell which property the statement illustrates: (Associative, Identity, Commutative)

7.) $4 \cdot x = x \cdot 4$	8.) 6 + 0 = 0
Commutative Property of Multiplication 9.) 7(1) = 7	Identity Property of Addition 10.) $2 + (3 + x) = (x + 2) + 3$
Identity Property of Multiplication	Associative Property of Multiplication

3.4a Simplifying Expressions Notes

Objective: Students will be able to simplify algebraic expressions by combining like terms.

Vocabulary:

<u>Like terms</u>: Terms that have the same variables raised to the same exponents. Constant terms are also like terms.

How to Simplify a Variable Expression:

1.) Combine "like terms" (variables with variables, numbers with numbers)

1.) 3x + 9 + 2x	2.) y + y + y
5x + 9	Зу
3.) 7y + 6 - 1 + 12y	4.) 5x + 2y + 3x + 4
19y + 5	8x + 2y + 4
5.) 4d + 9 - d - 8	6.) 3x + 9 - 2x - 5
3d + 1	× + 4
	,

Challenge question:

Simplify: $7m + 2m^2 + 9b - 3m + 5m^2 - 3b$

 $7m^2 + 6b + 4m$

3.4b Distributive Property and Expressions Notes

Distributive Property: To multiply a sum or difference by a number, multiply each number in the sum or difference by the number outside of the parentheses.

Steps for using the distributive property ("Jump the Fence"):

- 1.) The number outside the parentheses "jumps the fence" (distributes).
- 2.) The number tags everyone inside (tag = multiply).
- 3.) Simplify the expression by combining like terms if needed.

Multiply Using the Distributive property:

1.) 35 x 4	2.) 63 × 7
30 x 4 = 120	60 x 7 = 420
5 x 4 = 20	$3 \times 7 = 21$
120 + 20 = 140	420 + 21 = 441

Simplify each expression:

3.) 5(2x) = 10x	4.) 4(x + 5) = 4x + 20
5.) 10(2b - 6) = 20b - 60	6.) $3(4w + 2) + 7w$ $12w + 6 + 7w$ $19w + 6$
7.) 6(2x + y + 4)	8.) 5 + 2(3x + 6)
12x + 6y + 24	5 + 6x + 6 6x + 11

Are the expressions equivalent? Simplify. Then explain why or why not.

9.)
$$3(2x + 9) + 3$$
 and $6x + 30$

Yes, 6x + 27 + 3 = 6x + 30The expressions are equivalent